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Abstract

During the course of the last decade, traveling wave accel-
erating structures for a future Linear Collider have been the
object of intense R&D efforts. An important problem is
the efficient computation of the long range wakefield with
the ability to include small alignment and tuning errors. To
that end, SLAC has developed an RF circuit model with a
demonstrated ability to reproduce experimentally measured
wakefields. The wakefield computation involves the re-
peated solution of a deterministic system of equations over
a range of frequencies. By taking maximum advantage of
the sparsity of the equations, we have achieved significant
performance improvements. These improvements make it
practical to consider simulations involving an entire linac
(∼ 103 structures). One might also contemplate assessing,
in real time, the impact of fabrication errors on the wake-
field as an integral part of quality control.

1 INTRODUCTION

During the course of the last decade, SLAC has been con-
ducting R&D on new generations of accelerating structures
for a future machine, the Next Linear Collider (NLC). The
culmination of this work is the Damped Detuned Struc-
ture (DDS). Since it is difficult to dissipate deflecting mode
power without also dissipating accelerating mode power,
this structure achieves high efficiency (shunt impedance) by
relying primarily on detuning to produce favorable phasing
of the dipole modes to mitigate the dipole sum wake. To
prevent the partial re-coherence of the long range wake, a
small amount of damping is provided by extracting dipole
mode energy through four manifolds which also serve as
pumping slots.

A linear collider is a complex system and detailed nu-
merical simulations are essential to understand the impact
of different random and/or systematic structure fabrication
errors on beam quality. Assuming a (loaded) gradient of 50
MV/m and a length of 2 m, the two arms of a 1 TeV in the
center-of-mass NLC would be comprised of approximately
10000 structures. To simulate the effect of fabrication er-
rors on emittance growth, one needs to compute one wake
per structure; consequently, there is considerable interest in
performing these computations as efficiently as possible. A
typical NLC structure comprises 206 cells. Because of the
large number of nodes, it impractical to resort to standard fi-
nite element or finite difference codes to compute the wake.
To make computations manageable, the SLAC group has
developed an RF circuit model. Despite its limitations, pre-
dictions have proven to be in remarkable agreement with
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experimental results. However, until now, the wake com-
putations remained too slow to make the simulation of a full
linac practical. In this paper, we describe algorithmic mod-
ifications that have led to a code achieving three orders of
magnitude improvement over previously reported perfor-
mance.

2 CIRCUIT MODEL FOR DDS

In an RF circuit model, Maxwell’s equations are discretized
using a low order expansion based on individual closed cell
modes. The result is a system of linear equations that can
conveniently be represented by a circuit where voltages and
currents are associated with modal expansion coefficient
amplitudes. A model suitable for the computation of the
fields excited by the dipole excitation of a detuned structure
was developed by Bane and Gluckstern [1]. The concept of
manifold damping was later introduced by Kroll [2] and the
circuit model was extended by the SLAC group to include
this feature [3]. The result is shown in Figure 1. The corre-
sponding equations can be put in the form

Figure 1: Circuit model for Damped Detuned Structures.
The thick horizontal lines represent a transmission line.
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where f is the frequency and I is a unit diagonal. The
submatrices H , Hx, G and R are N × N where N is the
number of cells ( N = 206 for the SLAC structure). H
and Ĥ describe respectively the TM110-like and TE111-like
cell mode coupling,Hx represents the TE - TM cross cou-
pling, R describes the manifold mode propagation and G
describes the TE-to-manifold coupling. The vectors a, â



are the normalized loop currents (a = i/
√
Cn) for the TM

and TE chains and V is the normalized manifold voltage at
each cell location. Finally, the right hand side b represents
the beam excitation. Since the boundary conditions at the
cell interfaces impose that the TM and TE components must
propagate in opposite directions, only the TM cell modes
are excited by the beam. The dipole mode energy is cou-
pled out electrically to the manifold via small slots; the TE
component of the field is therefore capacitively coupled to
the manifold. Note that the manifold is represented by a
periodically loaded transmission line for which only nodal
equations make sense, resulting in a mixed current-voltage
formulation.

3 SPECTRAL FUNCTION

Computing the wake of DDS structures involves solving (1)
over the structure’s dipole mode frequency bandwith. A
longitudinal dipole impedance is first obtained by summing
the cell voltages (in the frequency domain) with appropriate
time delays. The transverse impedance is subsequently de-
rived by invoking the Panofsky-Wenzel theorem. The cir-
cuit approach to wake computation introduces a small non-
causal, non-physical component to the wake w(t) which
can be suppressed by considering [w(t) − w(−t)]u−1(t)
instead. The sine transform of this function, proportional
to the imaginary part of the impedance, is known as the
spectral functionS(ω). In the context of circuit-based wake
computations, S(ω) is a more convenient quantity to com-
pute than the dipole (beam) impedance.

4 SPARSE LINEAR EQUATIONS

In the DDS circuit model, each cell couples only to its
nearest neighbors. The resulting matrix is sparse and com-
plex symmetric (a consequence of electromagnetic reci-
procity). Computing the spectral function involves solv-
ing a sequence of systems of linear equations. At each step
in frequency, the coefficient matrix changes slightly while
its sparsity structure remains identical. In addition, a good
starting approximation to the solution for any frequency
step is provided by the solution from the previous step.

4.1 Iterative Methods

An algorithm suitable for symmetric complex systems is
the so-called Quasi Minimal Residual (QMR) algorithm
[4]. This algorithm is a relative of the well-known conju-
gate gradient method which seeks to minimize the quadratic
form (Ax − b)T · (Ax − b). The QMR algorithm miniz-
imizes a different quadratic form; in both cases the key to
rapid convergence is suitable “preconditioning” of the sys-
tem Ax = b with an approximate and easy to compute in-
verse. Tests were performed with DDS circuit matrices us-
ing standard incomplete factorization preconditioners; but
the results were somewhat disappointing. It is believed that
with a suitable preconditioner, the method can be competi-

tive; however, efforts to identify one were abandoned after
a direct technique proved to be more than satisfactory.

4.2 Direct Methods

Direct algorithms are essentially all relatives of the elemen-
tary Gaussian elimination algorithm, where unknowns are
eliminated systematically by linear combinations of rows.

A crucial point is that the order in which the rows of
the matrix are eliminated has a direct impact on com-
putational efficiency since a different order implies dif-
ferent fill-in patterns 1. In principle, there exists an elim-
ination order that minimizes fill-in, which is not the same
as the most numerically stable ordering. In some cases, it
is even possible to find an ordering that produces no fill-in
at all. Although the determination of a truly optimal order-
ing is an NP-complete problem, it is possible using practi-
cal strategies to find orderings that result in significant com-
putational savings. The most successful class of ordering
strategies are so-called “local” strategies that seek to mini-
mize fill-in at each step in the eliminationprocess regardless
of their impact at a later stage.

The Markowitz Algorithm A good local ordering
strategy is the Markowitz algorithm. Suppose Gaussian
elimination has proceeded through the first k stages. For
each row i in the active (n − k) × (n − k) submatrix, let
r

(k)
i denote the number of entries. Similarly, let c(k)

j be the
number of entries in column j. The Markowitz criterion is
to select as pivot the entry a(k)

ij from the (n− k)× (n− k)
submatrix that satisfies

min
i,j

(r(k)
i − 1)(c(k)

j − 1) (2)

Using this entry as the pivot causes (r(k)
i −1)(c(k)

j −1) entry
modifications at step k. Not all these modifications will re-
sult in fill-in; therefore, the Markowitz criterion is actually
an approximation to the choice of pivot which introduces
the least fill-in.

5 CODE DESCRIPTION

Our code is based on the spectral function method and uses
Markowitz ordering to solve the circuit equations in the fre-
quency domain. Compared to the procedure outlined in [3],
the following changes have been made: (1) The manifold
voltageA is not separately eliminated, in order to preserve
sparsity. (2) Once the system (1) is solved, the loop currents
are known and the cell voltages can be obtained by a simple
matrix multiplication. There is therefore no need to form
an inverse[5].

Two additional remarks are in order. The process of de-
termining the Markowitz ordering can by itself be time-

1The elimination process creates non-zero entries at positions which
correspond to zeros in the original coefficient matrix. The fill-in is the set
of all entries which were originally zeros and took on non-zeros value at
any step of the elimination process.



consuming; however, since the structure of the DDS ma-
trix remains the same at every step in frequency, the or-
dering needs to be determined only once. The relative
magnitudes of the equivalent circuit matrix entries do not
change very significantly over the frequency band occupied
by the dipole modes. This insures that the Markowitz
ordering remains numerically stable for all frequency
steps.

Implementations of the Markowitz algorithm are widely
available. We used SPARSE [6], a C implementation that
takes advantage of pointers to store the coefficient matrix as
a two-dimensional linked list. To each non-zero entry cor-
responds a list node. Each node in turn points to structure
which comprises the numerical value of the entry, its two-
dimensional indices and a pointer to an updating function.
A linked list makes sequential traversal of a row or a col-
umn of the matrix efficient; however, random access is ex-
pensive. To update the matrix at each frequency step, we
sequentially scan the entire list and call an update function
by indirectionusing a pointer stored within each entry struc-
ture.

The DDS circuit matrix is not only sparse, it is also sym-
metric. The SPARSE package does not exploit this struc-
ture because the standard elimination process destroys sym-
metry. We note that the Markowitz scheme can be extended
in a way that preserves symmetry.

6 RESULTS

Our optimized wakefield code was used to compute the
wake envelope of RDDS-1, the first realization of the
Rounded Damped Detuned Structure, using parameters
provided by SLAC. RDDS is a variant of the DDS concept
where the irises have been rounded in order to achieve the
highest possible shunt impedance. On a 550 MHz Pentium
III (Linux, GNU gcc compiler) a complete calculation of
the wake takes approximately 14 seconds. This represents
a gain of roughly three orders of magnitude compared to the
previously reported performance and allows the generation
of wakes for an entire linac in less than forty hours. Output
from the code is presented in Figures 2 and 3. The results
are identical to those obtained by the SLAC group.
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Figure 2: Computed spectral function for the RDDS1 struc-
ture.
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Figure 3: Computed wake for the RDDS1 structure.
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